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The bonding in Be metal is studied by calculation of valence and deformation density maps from data 
collected by Brown [Philos. Mag. (1972), 26, 1377-1394]. The deformation maps show clearly that the 
predominant interaction is bonding through the tetrahedral holes of the h.c.p, lattice. The valence-density 
maps generally agree with least-squares-model maps published by Stewart [Acta Cryst. (1977), A33, 33-38], 
though differences in detail exist which may result from incomplete space filling of the least-squares model 
functions. The experimental densities are interpreted in terms of the hybrid-orbital model of Altmann, 
Coulson & Hume-Rothery [Proc. R. Soc. London Ser. A, (1957), 240, 145-1551 as corresponding to 
(sp2) a (sp) b hybridization of the Be atoms with b > a. Agreement with a theoretical density obtained by the 
augmented plane wave calculation of lnoue & Yamashita [J. Phys. Soc. Jpn. (1973), 35, 677-683] supports 
both theoretical and experimental procedures. 

Introduction 

Beryllium in its metallic state has a hexagonal close 
packed (h.c.p.) structure. Though the appearance of 
this structure in 3d transition metals is correlated with 
an increasing participation of d orbitals in bond 
formation (Altmann, Coulson & Hume Rothery, 1957), 
this explanation is obviously not applicable in the case 
of Be. Brown (1972) from an analysis of 27 carefully 
measured absolute-scale structure factors concluded 
that tight binding must contribute to the bonding in 
crystalline Be in addition to metallic bonding. Brown's 
data were recently reanalyzed by Stewart (1977) who 
fitted an atom-centered spherical-valence monopole 
plus three higher multipoles to the experimental data 
and subsequently obtained the valence density as a plot 
of the multipole functions. This multipolar density 
analysis is attractive as it provides an analytical des- 
cription of the density which in addition to its other 
merits, may also contain less noise than a regular 
Fourier map. Unlike Fourier methods, the technique 
may also be applicable in cases where the data set does 
not contain all reflections within a certain reciprocal 
radius. On the other hand, some of the features ob- 
served in the model maps (i.e. the plot of the least- 
squares functions) may be artifacts due to the nature of 
the functions selected, or to the possible incomplete- 
ness of the function set. In the case of Be, Stewart fitted 
the density with a set of three functions selected by a 
systematic search of all triples of surface harmonic 
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functions, Ytm with l < 7 which obey the 6m2 site 
symmetry of the h.c.p, structure. But higher functions 
may be of importance and the radial description may 
be too restrictive, so a comparison with Fourier results 
is appropriate. 

The present study is the first comparison of valence 
and deformation densities obtained by Fourier methods 
with densities obtained from least-squares refinement 
models. Preliminary reports of subsequent studies 
on tetracyanoethylene, p-nitropyridine N-oxide and 
ammonium thiocyanate have been presented elsewhere 
(Hansen & Coppens, 1976; Price, Hansen & Coppens, 
1977). A second aim of this work is a more detailed 
analysis of the covalent contribution to the bonding 
in metallic Be. 

Least-squares refinement and calculation of density 
maps 

The valence and deformation densities calculated here 
are respectively defined as 

Pvalence : Pexp - - ~  Pi, core 
all 

atoms 
and 

Pdeformation = Pew --  ~ Pi free a t o m  all 
atoms 

and obtained by Fourier transform of the difference 
structure factors (Fob s -- Fcore ) and (Fob s -- Ffree atom), 
where the sign of Fob s is as calculated for Ffreeatom. 
Calculation of the structure factor requires knowledge 
of the positional and thermal parameters of the Be 
atoms. The former are fixed by symmetry, while the 
latter are obtained in a refinement using 17 reflections 
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Table 1. Results o f  spherical-atom least-squares refinements 

Crystal data: Space group P6]mmc; a = 2.2858 (2); c = 3.5843 (3) ,~ (Mackay & Hill, 1963). Be at ~ 2 3 
and the symmetry-equivalent position 2 ~ , 

Isotropic Anisotropic 

sin 0/2 (A-') 0.50-0.90 0.00-0.90 0.50-0.90 0.60-0.90 
U,, (A2) * 0.00743 (7) 0.0080 (3) 0.00768 (13) 0.00759 (12) 
U33 (,~2). 0.0071 (3) 0.00689 (12) 0.00686 (10) 
Number of observed parameters n o 18 27 18 13 
Number of variables n~ 1 2 2 2 
R(F) (%) 1.5 3.2 1.3 1.0 
Rw(F) (%) 1.3 3.2 1.2 0.8 
Gt 4-11 10.22 3.31 2.75 

* Values from the multipole refinement: U,t = 0.0072 (1); U33 = 0.0066 (2)A 2 (Stewart, 1977). 

t G = goodness of fit defined as G = I E w  (F°---IkFcl)q 2 
n o - -  n v . .I  

with sin 0/2 > 0.5 A - '  (sin O/'~'max = 0 .90  A - ' ) ,  and 
H a r t r e e - F o c k  atomic form factors as given by 
Fukamach i  (1971).* It may  be noted that  this cut-off  
would not be adequate  to eliminate bonding effects in 
strongly covalent crystals  where valence scattering 
persists much beyond this limit, but compar ison  with 

* Copies of the Be scattering factors used are available from the 
authors on request. 

Fig. 1. The hexagonal close-packed structure indicating the 
positions of the tetrahedral (T) and octahedral (O) holes. 

results using higher cut-off  values shows it to be satis- 
fac tory  in the case of  Be metal. Results are summar ized  
in Table 1. The goodness o f  fit is considerably improved 
in the high-order refinement in compar ison  with the full- 
da ta  t reatment ,  as may  be expected when the free-atom 
model is inadequate  in the low-order region. But the 
relatively high value of  G even in the range 0 - 6 0 - 0 - 9 0  
A suggests that  Brown 's  experimental  s tandard  
deviations m a y  have been underest imated by a factor  
of  perhaps  1.5. As found by Stewart  (1977), the an- 
isotropy of  the thermal  motion is not significant 
when all da ta  are included in a spherical-atom refine- 
ment. This result is not confirmed by the high-order 
refinement which indicates a smaller thermal  mot ion 
along the c axis in agreement  with Stewart ' s  multipole 
analysis,  though the present  tempera ture  factors  are 
about  5% higher than those given by Stewart  (Table 1). 
As illustrated by the density maps  discussed below, 
part  of  the apparent  isotropy in the full-data refinement 
is due to an accumula t ion  of  charge in the te t rahedral  
holes of  the h.c.p, s t ructure which are located above 
and below each of  the Be a toms (Fig. 1). 

Be Be 

(a) (b) (c) 

Fig. 2. Deformation-density maps in sections parallel to (001). Contours at 0.025 e A -3. Negative contours broken. Contours below 
-0"- I0 e A -3 have been omitted. Cross-hatched areas are slightly negative. (a) z = ], the positions of four Be atoms are indicated. (b) 
z = I. T: tetrahedral site. (c) z = I. Oct: octahedral site. 
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Fig. 3. Deformation-density error-distribution maps in sections parallel to (001). Contours at 0.01 e/~,-3. (a) z = ~. (b) z = ~. 

Re 8e 

(a) (b) (c) 

Fig. 4. Valence-density maps in sections parallel to (001). Contours at 0.10 e N-3. Negative areas cross-hatched (note that these negative 
areas are not statistically significant). (a) z = I. (b) z = ~. (c) z = ½. 

The deformation density in three sections parallel to 
(001) are given in Fig. 2, while error maps, calculated 
as described elsewhere [Stevens & Coppens 1976; 
equations (5), (11) and (12)] are given in Fig. 3. The 

14 
Fig. 5 Valence density in the (110) plane. Contours as in Fig. 4. 

The tetrahedral, octahedral and Be sites are indicated, as are 
the positions of the density maxima (P). 

sections shown are at (a) z = 3 which is the hexagonal 
close-packed plane containing the Be atoms; (b) at 
z = ~ which contains the tetrahedral sites (marked T); 
and (c) at z = ~ which contains the octahedral sites 
(marked O). The errors in the deformation maps are 
smaller than 0.024 e ,~-3, except at the nuclear positions 
(about 0.32 e A, -3) where the experimental density is 
notoriously unreliable. But, features in other regions are 
clearly significant. Noticeable are the accumulation of 
density in the tetrahedral hole as opposed to the 
octahedral holes and the low value of the deformation 
density in the plane through the Be atoms parallel to 
(001). These features are much clearer than in the 
valence maps (Figs. 4 and 5) in which the octahedral 
hole also receives density from each of the unperturbed 
valence shells of the six adjacent Be atoms so that the 
ratio p(tetrahedral)/p(octahedral) which is 0-094/ 
0-03 = 3.1 in the deformation function is reduced 
to 0.37/0-24 = 1.5 in the valence density. Because the 
deformation function exclusively represents the redis- 
tribution of electrons on bond formation it is often more 
suitable for analysis of  bonding than the valence 
density. 

Comparison of least-squares and Fourier methods 

Stewart (1977) has constructed the static valence- 
electron-density maps from the atomic deformation 
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functions (which are a monopole plus three harmonic 
functions): P] (cos 0) sin 3~0, P~6 (cos 0) and P~ (cos 0) 
sin 3~0. Because the thermal parameters are not in- 
eluded, the maps correspond to an extrapolation of the 
experimental information to zero thermal motion and 
infinite resolution. But in the case of Be with its diffuse 
valence density and low thermal motion we may expect 
the main features in the least-squares model density 
(LSMD) and the experimental valence density (EVD) 
to be similar. The maximum valence-density peaks 
appear at the same position in the tetrahedral holes in 
both maps and are comparable in height (LSMD: 
0.33 e A -3, EVD: 0.37 e A-3), but a peak of about 
0.29 e A -3 is found at the octahedral site in the model 
map which is only a saddle point at 0.24 e A -3 in the 
experimental density. The ratio of the peak height in the 
tetrahedral hole to Poctahedral is about 1.13 in the LSMD 
vs 1.5 in the EVD. Thus, the evidence for preferential 
bonding through the tetrahedral hole is much stronger 
in the present study. Such differences may be a result of 
incomplete space filling of the least-squares-model 
functions. In general, however, the two methods give 
comparable results and the experimental valence 
densities support the validity of the least-squares 
procedure. 

The nature of  bonding in Be 

Although it is often stated that the metallic bond is non- 
directional in character, the bonding in metals may be 
more directional than has commonly been admitted. 
This view was adopted by Altmann, Coulson & Hume- 
Rothery (1957) who developed a theory linking the 
crystal structures of transition metals with appropriate 
hybrid atomic orbitals. The hexagonal close-packed 
structure is described as (spd4)a(pdS)b(sd2) c where a, b, 
c are the relative populations of each of the hybrid 
orbitals. Such an explanation is, of course, not relevant 
to the Be structure where d orbitals cannot participate, 
but the principle of partially occupied atomic hybrids is 
useful in describing bonding in electron-deficient 
systems where the number of atomic neighbors far 
exceeds the number of available electron pairs. 

Beryllium has two valence electrons in its atomic 2s 
level; thus a crystal of N atoms would have a com- 
pletely filled valence band with N levels populated by 
2N electrons, and accordingly be an insulator. The con- 
ductivity of Be metal has been explained by Inoue & 
Yamashita (1973) by the overlap of the 2s and 2p 
atomic levels which becomes important when Be atoms 
are brought closer than about 1-6 times the interatomic 
distance in beryllium. Thus, physical properties indicate 
mixing of the s and p orbitals in Be crystals. According 
to the deformation and valence maps, the bonding 
scheme in terms of overlap of partially populated 
hybrid orbitals for Be may be described as (sp2)a(sp) b. 
The sp 2 hybrids account for the bonding to the in-plane 

(a) (b) 

Fig. 6. Schematic representation of hybrid bonding (a) in the 
plane of the hexagonal close-packed layers, (b) between layers. 

neighbors and are represented by the three peaks sur- 
rounding each Be atom in the plane parallel to (001), 
and thus form a multi-center bond in this plane. The 
two sp hybrids are in the direction of the c axis into the 
tetrahedral hole and can overlap sideways with sp 
hybrids pointing down from the subsequent layer and 
with the triple of sp 2 hybrids at the triangles which form 
the base of the tetrahedral hole (Fig. 6). Since each 
atom has two sp hybrids, one pointing up and one 
pointing down, the stacking sequence A B A B . . .  of the 
h.c.p, lattice is logically accounted for. The density 
maps further show that the sp hybrids have more 
density than the sp 2 orbitals, i.e. b > a. This is in full 
agreement with the observation that the c/a ratio in Be 
is smaller than the value of 1.633 for the ideal hex- 
agonal close-packed structure, indicating stronger 
bonding between than within layers. 

An augmented plane wave (APW) calculation of 
beryllium has been performed by Inoue & Yamashita 
(1973). The position and peak height (0.32 e A -3) of 
the maximum in the tetrahedral hole are in very satis- 
factory agreement with both Stewart's least-squares- 
model map and with the experimental maps presented 
here. The ratio of the maximum densities in the tetra- 
hedral and octahedral holes is 1-4, which is quite close 
to its experimental value of 1.5. The almost quantitative 
agreement between theory and experiment is quite 
remarkable and suggests that further insight into 
bonding in metals and alloys may be obtained by 
analysis of either experimental or theoretical charge 
distributions. 

Support of this work by the National Science 
Foundation is gratefully acknowledged. 
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A computer program has been written to simulate binary face-centered cubic solutions by interchanging the 
atoms until the populations in 18 shells are in agreement with the short-range order parameters obtained from 
diffuse X-ray measurements. Comparisons are made between the intensity maps from the model and from 
the data for most of the published work. We conclude that the published data are of reasonable quality, 
although sometimes the alphas are somewhat too large or the intensity maps contain artifacts. Computer 
simulation can be useful in rectifying errors in the experimental parameters. 

Introduction 

Since it is known that all the diffuse scattering that 
occurs solely as the result of the nonrandomness in 
solid solutions is representable in terms of the Warren-  
Cowley short-range order parameters, it follows that 
only these parameters can be calculated from the obser- 
vations of diffuse scattering. These parameters, called 
alphas, are related to the average composition within a 
given shell around a given central atom. Thus, they are 
expressible in terms of conditional probabilities. Having 
obtained a set of alphas, one normally wants to answer 
certain questions about the nature of the solution, 
questions that cannot be answered directly from the 
alphas but which could be addressed by use of a 
physical model. The problem of translating the alphas 
into a model that will reproduce them is a rather 
formidable task because of the large number of atoms 
that must be used to obtain the desired statistical 
accuracy. 

Gehlen & Cohen (1965) first solved this problem by 
devising a computer program that rearranged the two 
kinds of atoms until the desired populations were 
obtained in the first three shells. The author devised a 
similar program (Williams, 1970) and over the years 
kept including more and more shells in the simulation 
without necessarily ever getting entirely satisfactory 
agreement between the data and the model. In partic- 
ular, in the case of a copper-base aluminum alloy, 
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seven shells were not sufficient (Williams, 1974). 
Because of this continuing frustration of not being 
able to obtain the desired level of agreement, we decided 
to rewrite our program to model 18 shells in the hope 
that this would always be sufficient. Because of the 
large number of sites involved, we implemented the 
most efficient algorithm that we could devise. The 
possible small differences of the results produced by the 
new algorithm are masked by the effect of the inclusion " 
of many more shells. The new program has been docu- 
mented in a recent report (Williams, 1976). 

As an extensive test of this new program, we have 
modeled most of the reasonably complete sets of data 
for face-centred cubic solutions. This was done not only 
to obtain a good base of experience with the new 
program, but also to determine the extent to which 
such simulation can identify and remove deficiencies in 
data sets. We have also included some information that 
characterizes the modeling process. 

Model generation 

The documentation report (Williams, 1976) gives the 
complete program along with the details of how it 
operates. Our comments here are limited to those 
required to made the present paper self-contained. 

For a given model, one can calculate the number of 
1-1 pairs for each shell that will agree with a prescribed 
set of alphas. (The minor species is identified as 1, the 
major as 0.) A pair is formed by a central 1 atom and a 
1 atom in a shell. Further, at any stage of modeling one 


